Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two phase 3 placebo-controlled trials of the CYD-TDV vaccine, evaluated in children aged 2-14 y (CYD14) and 9-16 y (CYD15), demonstrated vaccine efficacy (VE) of 56.5% and 60.8%, respectively, against symptomatic virologically confirmed dengue (VCD). Sieve analyses were conducted to evaluate whether and how VE varied with amino acid sequence features of dengue viruses (DENVs). DENV premembrane/envelope amino acid sequences from VCD endpoint cases were aligned with the vaccine insert sequences, and extensions of the proportional hazards model were applied to assess variation in VE with amino acid mismatch proportion distances from vaccine strains, individual amino acid residues, and phylogenetic genotypes. In CYD14, VE against VCD of any serotype (DENV-Any) decreased significantly with increasing amino acid distance from the vaccine, whereas in CYD15, VE against DENV-Any was distance-invariant. Restricting to the common age range and amino acid distance range between the trials and accounting for differential VE by serotype, however, showed no evidence of VE variation with distance in either trial. In serotype-specific analyses, VE against DENV4 decreased significantly with increasing amino acid distance from the DENV4 vaccine insert and was significantly greater against residue-matched DENV4 at eight signature positions. These effects were restricted to 2- to 8-y-olds, potentially because greater seropositivity of older children at baseline might facilitate a broader protective immune response. The relevance of an antigenic match between vaccine strains and circulating DENVs was also supported by greater estimated VE against serotypes and genotypes for which the circulating DENVs had shorter amino acid sequence distances from the vaccine.

Original publication

DOI

10.1073/pnas.1714250115

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

04/09/2018

Volume

115

Pages

E8378 - E8387

Keywords

CYD-TDV, amino acid position signatures, dengue virus, sieve analysis, vaccine efficacy