Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background: mcr-1-mediated colistin resistance in Enterobacteriaceae is concerning, as colistin is used in treating multidrug-resistant Enterobacteriaceae infections. We identified trends in human fecal mcr-1-positivity rates and colonization with mcr-1-positive, third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae in Guangzhou, China, and investigated the genetic contexts of mcr-1 in mcr-1-positive 3GC-R strains. Methods: Fecal samples were collected from in-/out-patients submitting specimens to 3 hospitals (2011-2016). mcr-1 carriage trends were assessed using iterative sequential regression. A subset of mcr-1-positive isolates was sequenced (whole-genome sequencing [WGS], Illumina), and genetic contexts (flanking regions, plasmids) of mcr-1 were characterized. Results: Of 8022 fecal samples collected, 497 (6.2%) were mcr-1 positive, and 182 (2.3%) harbored mcr-1-positive 3GC-R Enterobacteriaceae. We observed marked increases in mcr-1 (0% [April 2011] to 31% [March 2016]) and more recent (since January 2014; 0% [April 2011] to 15% [March 2016]) increases in human colonization with mcr-1-positive 3GC-R Enterobacteriaceae (P < .001). mcr-1-positive 3GC-R isolates were commonly multidrug resistant. WGS of mcr-1-positive 3GC-R isolates (70 Escherichia coli, 3 Klebsiella pneumoniae) demonstrated bacterial strain diversity; mcr-1 in association with common plasmid backbones (IncI, IncHI2/HI2A, IncX4) and sometimes in multiple plasmids; frequent mcr-1 chromosomal integration; and high mobility of the mcr-1-associated insertion sequence ISApl1. Sequence data were consistent with plasmid spread among animal/human reservoirs. Conclusions: The high prevalence of mcr-1 in multidrug-resistant E. coli colonizing humans is a clinical threat; diverse genetic mechanisms (strains/plasmids/insertion sequences) have contributed to the dissemination of mcr-1, and will facilitate its persistence.

Original publication

DOI

10.1093/cid/cix885

Type

Journal article

Journal

Clin Infect Dis

Publication Date

10/02/2018

Volume

66

Pages

676 - 685