Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process. RESULTS: To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAF(V600E) or NRAS(Q61K) driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAF(V600E) and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway. CONCLUSION: This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.

Original publication

DOI

10.1186/gb-2013-14-10-r113

Type

Journal article

Journal

Genome Biol

Publication Date

2013

Volume

14

Keywords

Animals, Animals, Genetically Modified, DNA Copy Number Variations, Disease Models, Animal, Gene Amplification, Gene Knockout Techniques, Genetic Heterogeneity, Homozygote, INDEL Mutation, Melanoma, Mutation, Polymorphism, Single Nucleotide, Risk Factors, Sequence Deletion, Ultraviolet Rays, Zebrafish