Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2016 IEEE. Malaria is a major global health threat. The standard way of diagnosing malaria is by visually examining blood smears for parasite-infected red blood cells under the microscope by qualified technicians. This method is inefficient and the diagnosis depends on the experience and the knowledge of the person doing the examination. Automatic image recognition technologies based on machine learning have been applied to malaria blood smears for diagnosis before. However, the practical performance has not been sufficient so far. This study proposes a new and robust machine learning model based on a convolutional neural network (CNN) to automatically classify single cells in thin blood smears on standard microscope slides as either infected or uninfected. In a ten-fold cross-validation based on 27,578 single cell images, the average accuracy of our new 16-layer CNN model is 97.37%. A transfer learning model only achieves 91.99% on the same images. The CNN model shows superiority over the transfer learning model in all performance indicators such as sensitivity (96.99% vs 89.00%), specificity (97.75% vs 94.98%), precision (97.73% vs 95.12%), F1 score (97.36% vs 90.24%), and Matthews correlation coefficient (94.75% vs 85.25%).

Original publication

DOI

10.1109/BIBM.2016.7822567

Type

Conference paper

Publication Date

17/01/2017

Pages

493 - 496