Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A deeper understanding of extreme hot weather are needed in cities sensitive to heat effects, an investigation was done in the tropical town of Kaohsiung in Taiwan. Its 11 districts were divided into three climatic classes varying from high urban heat, low levels of green space and lack of proximity to water bodies to low urban heat, adequate green space and proximity to water bodies. Daily data on natural mortality, meteorological variables, and pollutants from May-October 1999-2008 were analysed using generalised additive models for the time-series data. Subgroup analyses were conducted, stratifying decedents according to the level of planning activity required in order to mitigate adverse heat effects in their residential areas, classifying districts as "level 1" for those requiring a high level of mitigation action; "level 2" for those requiring some action; and "level 3" for those that need only preserve existing conditions. Stratified analyses showed that mortality increases per 1 °C rise on average, either on the same day or in the previous 4 days (lags 0-4), were associated with 2.8%, 2.3% and -1.3% for level 1, 2 and 3 districts, respectively. The slope describing the association between temperature and mortality was higher above 29.0 °C resulting in corresponding increases of 4.2%, 5.0% and 0.3% per per 1 °C rise in temperature, respectively. Other meteorological variables were not significantly associated with mortality. It is concluded that hot season mortality in Kaohsiung is only sensitive to heat effects in districts classified as having unfavourably climatic conditions and requiring mitigation efforts in city planning. Urban planning measures designed to improve climatic conditions could reduce excess mortality resulting from extreme hot weather.

Original publication

DOI

10.4081/gh.2013.52

Type

Journal article

Journal

Geospat Health

Publication Date

11/2013

Volume

8

Pages

37 - 44

Keywords

Aged, Aged, 80 and over, Air Pollutants, Effect Modifier, Epidemiologic, Environmental Monitoring, Female, Global Warming, Humans, Male, Meteorological Concepts, Middle Aged, Mortality, Taiwan, Urban Health