Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Severe malaria is associated with decreased nitric oxide (NO) production and low plasma concentrations of L-arginine, the substrate for NO synthase. Supplementation with L-arginine has the potential to improve NO bioavailability and outcomes. We developed a pharmacokinetic model for L-arginine in moderately severe malaria to explore the concentration-time profile and identify important covariates. In doses of 3, 6, or 12 g,L-arginine was infused over 30 min to 30 adults with moderately severe malaria, and plasma concentrations were measured at 8 to 11 time points. Patients who had not received L-arginine were also assessed and included in the model. The data were analyzed using a population approach with NONMEM software. A two-compartment linear model with first-order elimination best described the data, with a clearance of 44 liters/h (coefficient of variation [CV] = 52%) and a volume of distribution of 24 liters (CV = 19%). The natural time course of L-arginine recovery was described empirically by a second-order polynomial with a time to half recovery of 26 h. The half-life of exogenous L-arginine was reduced in patients with malaria compared with that for healthy adults. Weight and ethnicity were significant covariates for clearance. MATLAB simulations of dosing schedules for use in future studies predicted that 12 g given over 6, 8, or 12 h will provide concentrations above the K(m) of endothelial cell CAT-1 transporters in 90%, 75%, and 60% of patients, respectively.

Original publication

DOI

10.1128/AAC.00421-08

Type

Journal article

Journal

Antimicrob Agents Chemother

Publication Date

12/2008

Volume

52

Pages

4381 - 4387

Keywords

Adolescent, Adult, Animals, Arginine, Dose-Response Relationship, Drug, Female, Humans, Infusions, Intravenous, Malaria, Falciparum, Male, Middle Aged, Models, Biological, Nitric Oxide, Plasmodium falciparum, Severity of Illness Index, Treatment Outcome, Young Adult