Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genetic polymorphisms within the MHC encoding region have the strongest impact on HIV disease progression of any in the human genome and provide important clues to the mechanisms of HIV immune control. Few analyses have been undertaken of HLA alleles associated with rapid disease progression. HLA-B*07:02 is an HLA class I molecule that is prevalent in most populations worldwide and that has previously been consistently linked to accelerated disease progression in B-clade infection. This study investigates the observation that HLA-B*07:02 is not associated with a high viral setpoint in C-clade infection. We examine the hypothesis that this clade-specific difference in association with disease outcome may be related to distinct targeting of CD8(+) T cell epitopes. We observed that C-clade-infected individuals with HLA-B*07:02 target a broader range of Gag epitopes, and to higher magnitudes, than do individuals infected with B-clade infection. In particular, a novel p17-Gag (Gag22-30, RPGGKKHYM) epitope is targeted in >50% of HLA-B*07:02-positive C-clade-infected individuals but clade-specific differences in this epitope result in nonimmunogenicity in B-clade infection. Only the C-clade p24-Gag "GL9" (Gag355-363, GPSHKARVL) epitope-specific CD8(+) T cell response out of 16 studied was associated with a low viral setpoint. Although this epitope was also targeted in B-clade infection, the escape mutant S357S is present at higher frequency in B-clade infection than in C-clade infection (70% versus 43% in HLA-B*07:02-negative subjects). These data support earlier studies suggesting that increased breadth of the Gag-specific CD8(+) T cell response may contribute to improved HIV immune control irrespective of the particular HLA molecules expressed.

Original publication

DOI

10.1089/AID.2013.0197

Type

Journal article

Journal

AIDS Res Hum Retroviruses

Publication Date

05/2014

Volume

30

Pages

468 - 475

Keywords

Adult, Cohort Studies, Disease Progression, Epitopes, T-Lymphocyte, Genotype, HIV Infections, HIV-1, HLA-B7 Antigen, Humans, Polymorphism, Genetic, gag Gene Products, Human Immunodeficiency Virus