Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Understanding how DNA repair processes occur in vivo when access to DNA is hindered by chromatin structural organisation is a current challenge. In general terms, the following sequence of events has to be considered within a chromatin environment: (i) finding a lesion (ii) repairing this lesion, and (iii) full restoration of a functional chromatin locus. In this review, basic principles concerning nucleosome dynamics, both intrinsic properties and those dependent on accessory factors, will be used to discuss the issue of lesion accessibility to damage-detecting proteins within chromatin. In addition, opportunities for damage detection due to chromatin alterations directly linked with transcription and replication processes will be considered. After damage detection, additional processes to enhance accessibility within chromatin may be needed to accommodate downstream repair factors or to allow DNA synthesis, resulting in interdependency between repair and accessibility mechanisms in chromatin. Finally, we will comment on the way in which chromatin assembly factors can participate in the maintenance of chromatin structures during DNA repair.

Type

Journal article

Journal

Biochimie

Publication Date

11/2003

Volume

85

Pages

1133 - 1147

Keywords

Animals, Chromatin, DNA Damage, DNA Repair, DNA-Binding Proteins, Histones, Humans