Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Learning disability (LD) is a very common, lifelong and disabling condition, affecting about 3% of the population. Despite this, it is only over the past 10-15 years that major progress has been made towards understanding the origins of LD. In particular, genetics driven advances in technology have led to the unequivocal demonstration of the importance of genome imbalance in the aetiology of idiopathic LD (ILD). In this review we provide an overview of these advances, discussing technologies such as multi-telomere FISH and array CGH that have already emerged as well as new approaches that show diagnostic potential for the future. The advances to date have highlighted new considerations such as copy number polymorphisms (CNPs) that can complicate the interpretation of genome imbalance and its relevance to ILD. More importantly though, they have provided a remarkable approximately 15-20% improvement in diagnostic capability as well as facilitating genotype/phenotype correlations and providing new avenues for the identification and understanding of genes involved in neurocognitive function.

Original publication

DOI

10.1159/000095917

Type

Journal article

Journal

Cytogenet Genome Res

Publication Date

2006

Volume

115

Pages

215 - 224

Keywords

Chromosome Aberrations, Chromosome Mapping, Chromosomes, Genome, Human, Genomics, Humans, In Situ Hybridization, Fluorescence, Internet, Learning Disorders, Nucleic Acid Hybridization, Polymorphism, Genetic