Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

alpha-Dystroglycan (alpha-DG) was recently identified as a receptor for lymphocytic choriomeningitis virus (LCMV) and several other arenaviruses, including Lassa fever virus (W. Cao, M. D. Henry, P. Borrow, H. Yamada, J. H. Elder, E. V. Ravkov, S. T. Nichol, R. W. Compans, K. P. Campbell, and M. B. A. Oldstone, Science 282:2079-2081, 1998). Data presented in this paper indicate that the affinity of binding of LCMV to alpha-DG determines viral tropism and the outcome of infection in mice. To characterize this relationship, we evaluated the interaction between alpha-DG and several LCMV strains, variants, and reassortants. These viruses could be divided into two groups with respect to affinity of binding to alpha-DG, dependence on this protein for cell entry, viral tropism, and disease course. Viruses that exhibited high-affinity binding to alpha-DG displayed a marked dependence on alpha-DG for cell entry and were blocked from infecting mouse 3T6 fibroblasts by 1 to 4 nM soluble alpha-DG. In addition, high-affinity binding to alpha-DG correlated with an ability to infiltrate the white pulp (T-dependent) area of the spleen, cause ablation of the cytotoxic T-lymphocyte (CTL) response by day 7 postinfection, and establish a persistent infection. In contrast, viruses with a lower affinity of binding to alpha-DG were only partially inhibited from infecting alpha-DG(-/-) embryonic stem cells and required a concentration of soluble alpha-DG higher than 100 nM to prevent infection of mouse 3T6 fibroblasts. These viruses that bound at low affinity were mainly restricted to the splenic red pulp, and the host generated an effective CTL response that rapidly cleared the infection. Reassortants of viruses that bound to alpha-DG at high and low affinities were used to map genes responsible for the differences described to the S RNA, containing the virus attachment protein glycoprotein 1.

Original publication

DOI

10.1128/JVI.75.1.448-457.2001

Type

Journal article

Journal

J Virol

Publication Date

01/2001

Volume

75

Pages

448 - 457

Keywords

Animals, Cytoskeletal Proteins, Dystroglycans, Female, Kinetics, Lymphocytic Choriomeningitis, Lymphocytic choriomeningitis virus, Membrane Glycoproteins, Mice, Mice, Inbred BALB C, RNA, Viral, Receptors, Virus, Spleen, T-Lymphocytes, Cytotoxic