Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Much recent work strongly supports the hypothesis that CD8(+) T lymphocytes (CTLs) exert important immune control over HIV and so are a major selective force in its evolution. We analyse this host-pathogen interplay and focus on new data that describe the overall 'effectiveness' of CTL responses (strength, spread, specificity and 'stamina') and the mechanisms by which HIV may evade this suppressive activity. CTLs directed against HIV recognise very large numbers of distinct epitopes across the genome, are largely functional, turn over rapidly, and possess a phenotype that is distinct from CD8(+) lymphocytes specific for other viruses. Mutation of HIV epitopes that alters or abolishes CTL recognition altogether appears to be the most important immune escape mechanism, as the variation that HIV generates defies the limits of the T cell repertoire. However, this immune evasion is still only well-studied in a few patients. The rules that govern immune escape, and the ultimate limits of CTL capacity to deal with the variant epitopes that currently circulate, are not understood. This information will determine the feasibility of current vaccine approaches that, so far, make no provision for the enormous antigenic plasticity of HIV.

Type

Journal article

Journal

Curr Opin Microbiol

Publication Date

08/2002

Volume

5

Pages

408 - 413

Keywords

Adult, Child, Preschool, Epitopes, T-Lymphocyte, Female, HIV Infections, HIV-1, Humans, Mutation, T-Lymphocytes, Cytotoxic