Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The tracking and projection of emerging epidemics is hindered by the disconnect between apparent epidemic dynamics, discernible from noisy and incomplete surveillance data, and the underlying, imperfectly observed, system. Behavior changes compound this, altering both true dynamics and reporting patterns, particularly for diseases with nonspecific symptoms, such as influenza. We disentangle these effects to unravel the hidden dynamics of the 2009 influenza A/H1N1pdm pandemic in London, where surveillance suggests an unusual dominant peak in the summer. We embed an age-structured model into a bayesian synthesis of multiple evidence sources to reveal substantial changes in contact patterns and health-seeking behavior throughout the epidemic, uncovering two similar infection waves, despite large differences in the reported levels of disease. We show how this approach, which allows for real-time learning about model parameters as the epidemic progresses, is also able to provide a sequence of nested projections that are capable of accurately reflecting the epidemic evolution.

Original publication

DOI

10.1073/pnas.1103002108

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

08/11/2011

Volume

108

Pages

18238 - 18243

Keywords

Bayes Theorem, Humans, Influenza A Virus, H1N1 Subtype, Influenza, Human, London