Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Red blood cells infected withPlasmodium falciparum(IRBCs) undergo changes primarily in their membrane composition that contribute to malaria pathogenesis. However, all manifestations (eg, anemia) cannot be accounted for by IRBCs alone. Uninfected erythrocytes (URBCs) may play a role, but they have been under-researched. We wanted to document changes in the erythrocyte membrane that could contribute to URBC reduced life span and malaria-associated anemia. Human erythrocytes were cultured withP falciparumand washed at the trophozoite stage. IRBCs and URBCs were separated on Percoll density gradient, thus obtaining erythrocyte fractions of different densities/ages. IRBC- and URBC-purified membranes were analyzed and compared with control normal erythrocytes (NRBCs) of the same age, from the same donor, kept in the same conditions.P falciparumaccelerated aging of both IRBCs and URBCs, causing a significant shift in the cell population toward the denser (old) fraction. Protein, phospholipid, and cholesterol content were reduced in IRBCs and young URBCs. Young and medium uninfected fractions had higher levels of lipid peroxidation and phospholipid saturation (because of the loss of polyunsaturated fatty acids, PUFAs) and lower phosphatidylserine. In IRBCs, thiobarbituric reactive substances (TBARSs) were higher, and PUFAs and phosphatidylserine lower than in NRBCs and URBCs. In comparison, trophozoite membranes had lower phospholipid (particularly sphingomyelin and phosphatidylserine) and cholesterol content and a higher degree of saturation. Parasite-induced peroxidative damage might account for these modifications. In summary, we demonstrated that membrane damage leading to accelerated senescence of both infected and uninfected erythrocytes will likely contribute to malaria anemia.

Original publication

DOI

10.1182/blood-2002-08-2437

Type

Journal article

Journal

Blood

Publication Date

07/2003

Volume

102

Pages

705 - 711

Addresses

Istituto di Fisiologia Generale e Chimica Biologica Giovanni Esposito, Facoltà di Farmacia, Via Trentacoste 2, 20134-Milano, Italy. omodeo@mailserver.unimi.it

Keywords

Erythrocytes, Erythrocyte Membrane, Animals, Humans, Plasmodium falciparum, Thiobarbituric Acid Reactive Substances, Cholesterol, Fatty Acids, Fatty Acids, Unsaturated, Membrane Lipids, Phospholipids, Membrane Proteins, Protozoan Proteins, Coculture Techniques, Erythrocyte Aging, Bystander Effect, Lipid Peroxidation, Oxidative Stress